Copyright @ 2019 by the McKinnie Lab, Proudly created with Wix.com

Publications

Ph.D. and Postdoc publications

19) Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage

Z.-R. Li, J. Li, W. Cai, J. Y. H. Lai, S. M. K. McKinnie, W.-P. Zhang, B. S. Moore, W. Zhang, and P.-Y. Qian..

Nat. Chem., 2019, https://doi.org/10.1038/s41557-019-0317-7.

18) Scalable biosynthesis of the seaweed neurochemical kainic acid.

J. R. Chekan, S. M. K. McKinnie, M. L. Moore, S. G. Poplawski, T. P. Michael, and B. S. Moore.

Angew. Chem. Int. Ed., 2019, 58, 8454-8457.

17) Biosynthesis of L-4-chlorokynurenine, a lipopeptide antibiotic non-proteinogenic amino acid and antidepressant prodrug.

H. L. Luhavaya, R. Sigrist, J. R. Chekan, S. M. K. McKinnie, and B. S. Moore.

Angew. Chem. Int. Ed., 2019, 58, 8394-8399.

16) Synthesis, bioactivity and enzymatic modification of a focused compound library of thiotetromycin C-5 derivatives.

M. L. Rothe, J. Li, E. Garibay, B. S. Moore*, and S. M. K. McKinnie*.

(*co-corresponding authors)

Org. Biomol. Chem., 2019, 17, 3416-3423.

15) Plasma kallikrein cleaves and inactivates apelin-17: Palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents.

C. Fischer, T. Lamer, W. Wang, S. M. K. McKinnie, X. Iturrioz, C. Llorens-Cortes, G. Y. Oudit, and J. C. Vederas.

Eur. J. Med. Chem., 2019, 166, 119-124.

14) Total enzyme syntheses of napyradiomycins A1 and B1.

S. M. K. McKinnie*, Z. D. Miles*, P. A. Jordan, T. Awakawa, H. P. Pepper, L. A. M. Murray, J. H. George, and B. S. Moore.

(*authors contributed equally)

J. Am. Chem. Soc., 2018, 140, 17840-17845.

13) Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom.

J. K. Brunson*, S. M. K. McKinnie*, J. R. Chekan, J. P. McCrow, Z. D. Miles, E. M. Bertrand, V. A. Bielinski, H. Luhavaya, M. Oborník, G. J. Smith, D. A. Hutchins, A. E. Allen, and B. S. Moore. (*authors contributed equally)

Science, 2018, 361, 1356-1358.

12) Total synthesis establishes the biosynthetic pathway to the naphterpin and marinone natural products.

L. A. M. Murray, S. M. K. McKinnie, H. P. Pepper, R. Erni, Z. D. Miles, M. C. Cruickshank, B. López-Pérez, B. S. Moore, and J. H. George.

Angew. Chem. Int. Ed. Engl., 2018, 57, 11009-11014.

11) Characterization and biochemical assays of Streptomyces vanadium-dependent chloroperoxidases.

S. M. K. McKinnie, Z. D. Miles, and B. S. Moore.

Methods Enzymol., 2018, 604, 405-424.

10) Organohalogens naturally biosynthesized in marine environments and produced as disinfection byproducts alter sarco/endoplasmic reticulum Ca2+ dynamics.

J. Zheng, S. M. K. McKinnie, A. E. El Gamal, W. Feng, Y. Dong, V. Agarwal, W. Fenical, A. Kumar, Z. Cao, B. S. Moore, and I. N. Pessah.

Environ. Sci. Technol., 2018, 52, 5469-5478.

9) Synthetic modification within the “RPRL” region of apelin peptides: Impact on cardiovascular activity and stability to neprilysin and plasma degradation.

S. M. K. McKinnie, W. Wang, C. Fischer, T. McDonald, K. R. Kalin, X. Iturrioz, C. Llorens-Cortes, G. Y. Oudit, and J. C. Vederas.

J. Med. Chem., 2017, 60, 6408-6427.

8) Targeting the apelin pathway as a novel therapeutic approach for cardiovascular disease.

J.-C. Zhong, Z.-Z. Zhang, W. Wang, S. M. K. McKinnie, J. C. Vederas, and G. Y. Oudit.

Biochem. Biophys. Acta, Mol. Basis Dis., 2017, 1863, 1942-1950.

7) The metalloprotease neprilysin degrades and inactivates apelin peptides.

S. M. K. McKinnie, C. Fischer, K. M. H. Tran, W. Wang, F. Mosquera, G. Y. Oudit, and J. C. Vederas.

ChemBioChem., 2016, 17, 1495-1498.

6) Angiotensin converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: Physiological effects in the cardiovascular system.

W. Wang, S. M. K. McKinnie, M. Farhan, M. Paul, T. McDonald, B. McLean, C. Llorens-Cortes, S. Hazra, A. G. Murray, J. C. Vederas, and G. Y. Oudit.

Hypertension, 2016, 68, 365-377.

5) Differential response of orthologous L,L-diaminopimelate aminotransferases (DapL) to enzyme inhibitory antibiotic lead compounds.

S. M. K. McKinnie, E. M. Rodriguez-Lopez, J. C. Vederas, J. M. Crowther, H. Suzuki, R. C. J. Dobson, T. Leustek, A. J. Triassi, M. S. Wheatley, and A. O. Hudson.

Bioorg. Med. Chem., 2014, 22, 523-530.

4) Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: Therapeutic potential of synthetic apelin analogues.

W. Wang, S. M. K. McKinnie, V. B. Patel, G. Haddad, Z. Wang, P. Zhabyeyev, S. K. Das, R. Basu, B. McLean, V. Kandalam, J. M. Penninger, Z. Kassiri, J. C. Vederas, A. G. Murray, and G. Y. Oudit.

J. Am. Heart Assoc., 2013, 2, e000249.

3) The solid phase supported peptide synthesis of analogues of the lantibiotic lactocin S.

S. M. K. McKinnie, A. C. Ross, M. J. Little, and J. C. Vederas.

MedChemComm, 2012, 3, 971-975.

2) The synthesis of active and stable diaminopimelate analogues of the lantibiotic peptide lactocin S.

A. C. Ross, S. M. K. McKinnie, and J. C. Vederas.

J. Am. Chem. Soc., 2012, 134, 2008-2011.

1) Solid supported synthesis and biological evaluation of the lantibiotic peptide, bis-desmethyl lacticin 3147 A2.

V. R. Pattabiraman, S. M. K. McKinnie, and J. C. Vederas.

Angew. Chem. Int. Ed., 2008, 47, 9472-9475.