top of page

Publications

32) Vanadium haloperoxidases as noncanonical terpene synthases

J. T. Baumgartner*, L. I. Lozano Salazar*, L. A. Varga, G. H. Lefebre, S. M. K. McKinnie 

(*authors contributed equally)

 Methods Enzymol. 2024, 699, doi: 10.1016/bs.mie.2024.03.024

240418-MIE-NapH4-Fig.png

31) Algal kainoid synthases exhibit substrate-dependent hydroxylation and cyclization activities

A. R. Hopiavuori, S. M. K. McKinnie

ACS Chem. Biol. 2023,18, 2457-2463.

230711-DabC-TOC.jpg

30) Mechanistic and structural insights into a divergent PLP-dependent L-enduracididine cyclase from a toxic cyanobacterium

J. L. Cordoza, P. Y.-T. Chen, L. R. Blaustein, S. T. Lima, M. F. Fiore, J. R. Chekan, B. S. Moore, S. M. K. McKinnie

ACS Catal., 2023, 13, 9817-9828.

2023-ACSCat-GntC.jpg

29) Biosynthesis of guanitoxin enables global environmental detection in freshwater cyanobacteria

S. T. Lima, T. R. Fallon*, J. L. Cordoza*, J. R. Chekan, E. Delbaje, A. R. Hopiavuori, D. O. Alvarenga, S. M. Wood, H. Luhavaya, J. T. Baumgartner, F. A. Dörr, A. Etchegaray, E. Pinto, S. M. K. McKinnie^, M. F. Fiore^, B. S. Moore^. 

(*authors contributed equally, ^co-corresponding authors)

J. Am. Chem. Soc., 2022, 114, 9372-9379.

27) Tityus serrulatus scorpion venom as a potential drug source for Chagas' disease: trypanocidal and immunomodulatory activity

P. M. O. Pimentel, D. R. R. de Assis, M. Gualdrón-Lopez, A. Barroso, F. Brant, P. G. Leite, B. C. L. Oliveira, L. Esper, S. M. K. McKinnie, J. C. Vederas, M. N. Cordeiro, P. V. M. dos Reis, M. M. Teixeira, A. M. C. Pimenta, M. H. Borges, M. E. de Lima, F. S. Machado

Clin. Immunol., 2021, 226, 108713.

26) Meroterpenoid natural products from Streptomyces bacteria - the evolution of chemoenzymatic syntheses

L. A. M. Murray, S. M. K. McKinnie, B. S. Moore, J. H. George.

Nat. Prod. Rep., 2020, 37, 1334-1366.

2020-NPR-Abstract-Reworked.png

25) Moving pieces in a cellular puzzle: A cryptic peptide from the scorpion toxin Ts14 activates AKT and ERK signaling and decreases cardiac myocyte contractility via dephosphorylation of phospholamban

D. P. Goméz-Mendoza, R. P. Lemos, I. C. G. Jesus, V. Gorshkov, S. M. K. McKinnie, J. C. Vederas, F. Kjeldsen, S. Guatimosim, R. A. Santos, A. M. C. Pimenta, T. Verano-Braga.

J. Proteome Res., 2020, 19, 3467-3477.

2020-JProtRes-TOC.jpeg

24) Comparative genomics and metabolomics in the genus Nocardia

D. Männle, S. M. K. McKinnie, S. S. Mantri, K. Steinke, Z. Lu, B. S. Moore, N. Ziemert, L. Kaysser.

mSystems, 2020, 5, e00125-20.

23) Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an N-prenyltransferase

J. R. Chekan, S. M. K. McKinnie, J. P. Noel, B. S. Moore.

Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 12799-12805.

22) Nonlinear biosynthetic assembly of alpiniamide by a hybrid cis/trans-AT PKS-NRPS

R. Sigrist, H. Luhavaya, S. M. K. McKinnie, A. F. da Silva, I. D. Jurberg, B. S. Moore, L. G. de Oliveira.

ACS Chem. Biol., 2020, 15, 1067-1077.

21) Guanitoxin, re-naming a cyanobacterial organophosphate toxin

M. F. Fiore, S. T. de Lima, W. W. Carmichael, S. M. K. McKinnie, J. R. Chekan, B. S. Moore.

Harmful Algae, 2020, 92, 101737.

2020-HarmfulAlgae-Fig1.jpg

Publications before UCSC

20) Cariogenic Streptococcus mutans produces tetramic acid strain-specific antibiotics that impair commensal colonization

X. Tang, Y. Kudo, J. L. Baker, S. LaBonte, P. A. Jordan, S. M. K. McKinnie, J. Guo, T. Huan, B. S. Moore, and A. Edlund.

ACS Infect. Dis., 2020, 6, 563-571.

2020-ACSID-TOC.gif

19) Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage

Z.-R. Li, J. Li, W. Cai, J. Y. H. Lai, S. M. K. McKinnie, W.-P. Zhang, B. S. Moore, W. Zhang, and P.-Y. Qian.

Nat. Chem., 2019, 11, 880-889.

2019-NChem-TOC2.png

18) Scalable biosynthesis of the seaweed neurochemical kainic acid.

J. R. Chekan, S. M. K. McKinnie, M. L. Moore, S. G. Poplawski, T. P. Michael, and B. S. Moore.

Angew. Chem. Int. Ed., 2019, 58, 8454-8457.

2019-ACIE-Jon-TOC.jpg

17) Biosynthesis of L-4-chlorokynurenine, a lipopeptide antibiotic non-proteinogenic amino acid and antidepressant prodrug.

H. L. Luhavaya, R. Sigrist, J. R. Chekan, S. M. K. McKinnie, and B. S. Moore.

Angew. Chem. Int. Ed., 2019, 58, 8394-8399.

2019-ACIE-Anya-TOC.jpg

16) Synthesis, bioactivity and enzymatic modification of a focused compound library of thiotetromycin C-5 derivatives.

M. L. Rothe, J. Li, E. Garibay, B. S. Moore*, and S. M. K. McKinnie*.

(*co-corresponding authors)

Org. Biomol. Chem., 2019, 17, 3416-3423.

2019-OBC-TOC.png

15) Plasma kallikrein cleaves and inactivates apelin-17: Palmitoyl- and PEG-extended apelin-17 analogs as metabolically stable blood pressure-lowering agents.

C. Fischer, T. Lamer, W. Wang, S. M. K. McKinnie, X. Iturrioz, C. Llorens-Cortes, G. Y. Oudit, and J. C. Vederas.

Eur. J. Med. Chem., 2019, 166, 119-124.

2019-EJMC-TOC.jpg

14) Total enzyme syntheses of napyradiomycins A1 and B1.

S. M. K. McKinnie*, Z. D. Miles*, P. A. Jordan, T. Awakawa, H. P. Pepper, L. A. M. Murray, J. H. George, and B. S. Moore.

(*authors contributed equally)

J. Am. Chem. Soc., 2018, 140, 17840-17845.

2018-JACS-TOC.jpeg

13) Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom.

J. K. Brunson*, S. M. K. McKinnie*, J. R. Chekan, J. P. McCrow, Z. D. Miles, E. M. Bertrand, V. A. Bielinski, H. Luhavaya, M. Oborník, G. J. Smith, D. A. Hutchins, A. E. Allen, and B. S. Moore. (*authors contributed equally)

Science, 2018, 361, 1356-1358.

2018-Science-DAFig2.png

12) Total synthesis establishes the biosynthetic pathway to the naphterpin and marinone natural products.

L. A. M. Murray, S. M. K. McKinnie, H. P. Pepper, R. Erni, Z. D. Miles, M. C. Cruickshank, B. López-Pérez, B. S. Moore, and J. H. George.

Angew. Chem. Int. Ed. Engl., 2018, 57, 11009-11014.

2018-ACIE-TOC.jpg

11) Characterization and biochemical assays of Streptomyces vanadium-dependent chloroperoxidases.

S. M. K. McKinnie, Z. D. Miles, and B. S. Moore.

Methods Enzymol., 2018, 604, 405-424.

2018-MIE-Figure1.png

10) Organohalogens naturally biosynthesized in marine environments and produced as disinfection byproducts alter sarco/endoplasmic reticulum Ca2+ dynamics.

J. Zheng, S. M. K. McKinnie, A. E. El Gamal, W. Feng, Y. Dong, V. Agarwal, W. Fenical, A. Kumar, Z. Cao, B. S. Moore, and I. N. Pessah.

Environ. Sci. Technol., 2018, 52, 5469-5478.

2018-EST-TOC.jpeg

9) Synthetic modification within the “RPRL” region of apelin peptides: Impact on cardiovascular activity and stability to neprilysin and plasma degradation.

S. M. K. McKinnie, W. Wang, C. Fischer, T. McDonald, K. R. Kalin, X. Iturrioz, C. Llorens-Cortes, G. Y. Oudit, and J. C. Vederas.

J. Med. Chem., 2017, 60, 6408-6427.

2017-JMC-TOC.jpeg

8) Targeting the apelin pathway as a novel therapeutic approach for cardiovascular disease.

J.-C. Zhong, Z.-Z. Zhang, W. Wang, S. M. K. McKinnie, J. C. Vederas, and G. Y. Oudit.

Biochem. Biophys. Acta, Mol. Basis Dis., 2017, 1863, 1942-1950.

2016-BBAD-TOC.jpg

7) The metalloprotease neprilysin degrades and inactivates apelin peptides.

S. M. K. McKinnie, C. Fischer, K. M. H. Tran, W. Wang, F. Mosquera, G. Y. Oudit, and J. C. Vederas.

ChemBioChem., 2016, 17, 1495-1498.

2016-CBC-TOC.jpg

6) Angiotensin converting enzyme 2 metabolizes and partially inactivates pyr-apelin-13 and apelin-17: Physiological effects in the cardiovascular system.

W. Wang, S. M. K. McKinnie, M. Farhan, M. Paul, T. McDonald, B. McLean, C. Llorens-Cortes, S. Hazra, A. G. Murray, J. C. Vederas, and G. Y. Oudit.

Hypertension, 2016, 68, 365-377.

2016-Hypertension-Figure2_edited.jpg

5) Differential response of orthologous L,L-diaminopimelate aminotransferases (DapL) to enzyme inhibitory antibiotic lead compounds.

S. M. K. McKinnie, E. M. Rodriguez-Lopez, J. C. Vederas, J. M. Crowther, H. Suzuki, R. C. J. Dobson, T. Leustek, A. J. Triassi, M. S. Wheatley, and A. O. Hudson.

Bioorg. Med. Chem., 2014, 22, 523-530.

2014-BOMC-TOC.jpg

4) Loss of apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: Therapeutic potential of synthetic apelin analogues.

W. Wang, S. M. K. McKinnie, V. B. Patel, G. Haddad, Z. Wang, P. Zhabyeyev, S. K. Das, R. Basu, B. McLean, V. Kandalam, J. M. Penninger, Z. Kassiri, J. C. Vederas, A. G. Murray, and G. Y. Oudit.

J. Am. Heart Assoc., 2013, 2, e000249.

2013-JAHA-Fig5.gif

3) The solid phase supported peptide synthesis of analogues of the lantibiotic lactocin S.

S. M. K. McKinnie, A. C. Ross, M. J. Little, and J. C. Vederas.

MedChemComm, 2012, 3, 971-975.

2012-MCC-TOC.gif

2) The synthesis of active and stable diaminopimelate analogues of the lantibiotic peptide lactocin S.

A. C. Ross, S. M. K. McKinnie, and J. C. Vederas.

J. Am. Chem. Soc., 2012, 134, 2008-2011.

2012-JACS-Fig2.gif

1) Solid supported synthesis and biological evaluation of the lantibiotic peptide, bis-desmethyl lacticin 3147 A2.

V. R. Pattabiraman, S. M. K. McKinnie, and J. C. Vederas.

Angew. Chem. Int. Ed., 2008, 47, 9472-9475.

2008-ACIE-TOC.jpg
bottom of page